Exhibit 95

NOTE - 31 May 2002

CONFIDENTIAL

From: Anton A. Barendregt

Group Reserves Auditor, SIEP - EPB - GRA

To:

Lorin L. Brass

Director, Business Development, SIEP - EPB

. . .

Chris G. Finlayson

Managing Director, BSP

Сору:

Brian E. Straub

Technical Director, BSP

Rosmawatty R, Abd-Mumin

Manager, Land (Darat) Business Unit, BSP Manager, Western Business Unit, BSP

Martin G. Graham

Salleh-Bostaman b Zainal-Abidin

Manager, Eastern Business Unit, BSP

Thomas T. Prudence

Technical Services Manager, BSP

Peter J. Worby
Ben B.R. van den Berg

Chief Accountant, BSP
Head Internal Audit, BSP

Chris C. Kennett

Discipline Head, Reservoir Engineering (PE Mgr West), BSP

(circulation)

SIEP - EPF: Dominique Gardy, Rahim Khan

(circulation)

SIEP - EPB-P: Malcolm Harper, Jaap Nauta, John Pay

Paul G. Tauecchio

Business Advisor, SIEP - EPA

Han van Delden

Senior Manager, KPMG Accountants NV

Stephen L. Johnson

PriceWaterhouseCoopers

### SEC PROVED RESERVES AUDIT - BRUNEI SHELL PETROLEUM SDN BHD, 29 Apr - 3 May 2002

I have audited the Proved Reserves submissions of Brunei Shell Petroleum Sdn Bhd (BSP) for the year 2001 and the processes that were followed in their preparation. These submissions present the BSP contribution to the Group's externally reported Proved and Proved Developed Reserves and associated changes as at 31 December 2001.

Total Group share Proved Reserves booked by BSP at the end of 2001 were 72 mln m3 oil+NGL and 100 bln sm3 of gas. This represents some 5.6 % of total Group share Proved Reserves on an oil-equivalent basis. Proved reserves replacement ratios for BSP over 2001 were 152% for oil+NGL and 112% for gas.

The last previous SEC proved reserves audit for BSP was carried out in 1998. This current audit followed the procedures laid down in the "Petroleum Resource Volume Guidelines, SIEP 2001-1100/1101," (based, inter alia, on FASB Statement 69). It included a verification of the technical and commercial maturity of the reported reserves, a verification that margins of uncertainty were appropriate, that Group share and net sales volumes had been calculated correctly and that reported reserves changes were classified correctly. It also included a verification that the annual production (sales) submission through the Finance system was consistent with the reserves submission. The audit took the form of detailed discussions about technical details of many of BSP's fields with BSP Asset Unit staff and about the reserves reporting process with BSP reserves coordination staff.

The audit found that BSP follow well documented procedures in their annual reserves reporting process. Audit traits have historically been a strong feature in BSP reserves reporting and their high quality was confirmed during the audit. The most significant comment related to the conservative nature of BSP's Proved reserves, in particular Proved developed reserves, many of which were not in accordance with current Group guidelines. Although decreased substantially in recent years, the continued presence of 'legacy reserves' remains an area of concern. These are undeveloped reserves which have historically been booked in reservoirs but for which no clear activies had been identified (in line with prevailing practice at the time). These reserves should be addressed at the first available opportunity, while striving to avoid major reserves swings.

The audit finding is that the BSP statements fairly represent the Group entitlements to Proved Reserves at the end of 2001. There is a possibility of a small (3 %?) understatement of entitlement reserves due to the conservatism in particularly the Proved developed reserves. The changes in the Proved Reserves during 2001 can be reconciled from the documents at hand. The overall opinion from the audit regarding the state of BSP's 2001 Proved Reserves submission, taking account of the scoring in Attachment 3, is therefore <u>satisfactory</u>.

A summary of the findings and observations is included in the Attachments.

**EXHIBIT** 

A.A. Barendregt

Attachments 1, 2, 3, 4

FOIA Confidential
Treatment Requested

## SEC PROVED RESERVES AUDIT - BRUNEI SHELL PETROLEUM SDN BHD, 29 Apr. - 3 May 2002 MAIN OBSERVATIONS

- Brunei Shell Petroleum Sdn Bhd are a 50% Group company with their established head office in Seria, Brunei Darussalam. The remaining 50% of the company is held by the State of Brunei. The company operates a large number of offshore fields and some onshore fields. The three largest fields are the onshore Seria field. with first production in 1929 and the offshore SW Ampa and Champion fields where first production started in 1964 and 1972 respectively. Although the area is largely mature, there are still some smaller, recently discovered fields awaiting development.
  - Reserves are approximately evenly divided between oil+NGI and gas. Gas has been produced to the Brunei LNG plant since 1972. The 20-year gas contract with Japanese buyers was extended for another 20 years in 1992 on the basis of then available proved gas reserves. This basis, being somewhat conservative, has since then grown and there is now a surplus of some 1.5 Tcf proved gas and some 5 Tcf of expectation volumes.
- The Brunei fields consist of stacked near-shore reservoir sequences, broken up by clay diapir induced or tectonically induced faulting, resulting in numerous small reservoirs that show variable but generally poor communication. Initial fluid levels are therefore largely individual to reservoirs and each needs separate evaluation, although often in conjunction with its neighbours. A total of some 4000 reservoirs is currently recognized (of which some 1000 with Proved reserves), presenting a challenging task for reserves evaluation and development planning.

All of the fields are in relatively shallow offshore areas (up to 100 m water depth). Exploration focus is shifting towards deep offshore turbidite sequences, in which one field (Merpati) is carrying proved undeveloped reserves at this stage.

With the largest reservoirs developed first, BSP have faced several cycles of active development. Development tended to become temporarily reduced when the then available technology slowed down the maturation of new economically viable well targets. A recent upturn in development has been seen in the late 1990's when a number of factors contributed to an enhanced capability of reservoir performance modeling and development planning. These factors included enhanced 3D seismic acquisition (with Ocean Bottom Cable) and seismic processing (PSDM), more recently followed by geological modeling through the Petrel package, yielding greatly improved speed and accuracy of reservoir definition. Automatic downloading into MoReS dynamic simulation models allows this improved accuracy yield its benefits in dynamic modeling too. Throughtubing C-O logs allowed a much more widespread monitoring of dynamic fluid levels, greatly improving the accuracy of simulation models and predictions. Significant progress has been made in reducing drilling costs and improving drilling flexibility in well targeting, eg through short-radius horizontal drilling and multi-target subhorizontal wells.

The result of these successful technological developments is that new reserves developed per well show a steady trend, with no signs of any levelling off as yet.

- Expectation developed ultimate recoveries (DURs) are determined from performance decline extrapolations in those cases where there is no active history matched simulation model. The standard method of determining Proved DURs is through fitting a symmetrical triangular distribution around the Expectation estimates with the lower end point halfway between cumulative production and expectation UR. This tends to result in a Proved developed reserves volume that is invariably some 75% of Expectation (see Att. 4.1). This is highly artificial and not in accordance with current Group guidelines (which in turn follow SEC guidelines).
  - It is strongly recommended that proved developed reserves are derived from expectation developed reserves by multiplying the latter by a factor that is dependent on reservoir maturity and which approaches or equals 1 for the more mature reservoirs, where in-place volumes are well known.
- In line with general Group practice in the 1970's and 1980's, BSP have tended to determine total reservoir recoveries from volumetrics with recovery factors either assumed or derived from analogues, obtained from analytical reservoir studies or obtained from assumed well numbers and notional recoveries per well. After the start of field development, the developed reserves became based on production performance extrapolations but undeveloped reserves remained poorly defined as they were maintained as the difference between total URs (which were kept largely unchanged) and DURs.

With the introduction of new Group guidelines in 1993, requiring all reserves to be based on identified projects (i.e. well targets, numbers, costs and forecasts) the undeveloped reserves thus calculated became nonconformant with Group reserves guidelines. BSP have long recognized the non-conformance of these 'legacy' reserves. However, any temptation to 'wipe the state clean' (i.e. set all undefined undeveloped reserves to zero) was resisted because it was considered likely that in many reservoirs it would be possible to replace them by properly defined reserves, i.e with well targets, forecasts and robust economics. It was felt that major reserves swings needed to be avoided and the decision was therefore taken to keep these reserves in the

BSP-Covn 31/05/02

> **FOIA Confidential** Treatment Requested

A further reason why 'legacy' reserves have reduced in size was the conservatism in the original field in-place estimates (caused possibly by too rigorous petrophysical cut-offs?). As a result, developed URs continued to grow and in many cases they overtook the original total proved (and sometimes even expectation) UR estimates. Hesitation was observed in simply zeroising these negative reserves because reservoir crossflow was a common phenomenon and it was possible that the underestimate in one reservoir could be due to an overestimate in a neighbouring reservoir. A regional study was therefore required before proper updates could be made. Lack of resources and priority caused a continuous deferment of such studies in a number of areas. Negative reserves continued in many reservoirs (particularly in the Champion Main field), until concerted efforts in 2000/2001 brought back the total of such reserves to more reasonable, but still low proportions.

The continued existence of 'legacy' undeveloped reserves is still a cause for concern. BSP have therefore started and resourced a study that will address this issue and that of the too conservative Proved developed and undeveloped reserves that are not in accordance with Group guidelines. This study is fully supported. BSP are also strongly supported in their present drive for complete coverage of all developed and to-be-developed reservoirs by proper studies. One of the root causes for the present problems has been the practice of assessing total (developed + undeveloped) reserves as on estimate. Instead, developed and undeveloped reserves should both be defined separately and properly, preferably by a joint simulator model.

- 5. In the original approach followed by BSP, <u>Proved undeveloped reserves</u> were simply the difference between proved total and proved developed reserves. In the new approach, whereby undeveloped reserves are determined independently, the method of determining Proved volumes is less well defined. The impression is that in many cases, a conservative approach is still followed. Group guidelines clearly state that in such cases a number of simulator scenarios should be run, with a reasonable P85 scenario picked as the Proved case at first, which can gradually become updated by a scenario that grows closer to or equal to expectation values with increasing field maturity.
- 6. Undeveloped reserves in a number of fields and reservoirs do not yet fulfit the condition (to be introduced in Group guidelines at end 2002) that such identified reserves must be <u>economically robust</u> in order to be certain of their future development. Many of these reserves and associated forecasts are still notional and BSP are confident that, with proper study and with present technology (eg cheaper horizontal wellbores) they can be made economic. This is accepted.
- 7. BSP have historically been one of the strongest proponents of probabilistic reserves estimation and initial volumetric estimates are still done probabilistically. Any incomplete hydrocarbon column penetrations are thus also addressed probabilistically, i.e. 'proved areas' (ref. SEC definitions) are not adhered to rigidly. Although accepted Group practice in the past, this is no longer in line with Group guidelines. This should be addressed.
- Asset depreciation is done at a field level. Hence, guidelines would in principle allow <u>probabilistic addition</u> of reservoirs within a field. This is not done at present but is being considered by BSP as a possible method of bringing field Proved reserves closer to Expectation volumes.

The auditor opinion is that probabilistic addition of reservoir reservoirs to field level is not to be recommended. The reasons for this recommendation are as follows:

- Probabilistic volumetric estimates become irrelevant for mature fields. Probabilistic parameter ranges (bulk volume, porosity etc) can often not realistically be changed to capture the effects of field performance data and any change in volumetrics could therefore become arbitrary and not auditable.
- Reservoir dependency will become a critical issue in proper probabilistic addition of reservoir volumes. This will also be susceptible to subjective judgment and will also present audit trail problems.
- The need for probabilistic addition should diminish significantly if the calculation methods of Proved developed and undeveloped reserves are brought closer in line with Group guidelines, thereby bringing Proved reserves much closer to Expectation volumes.
- 9. Somewhat exceptionally, BSP REs keep track of condensate production from oil wells in oil+associated gas reservoirs, even though these liquids are produced through the oil stream. This condensate production is added to the condensate balance in these reservoirs and reflected in individual field condensate volumes. Reported NGL reserves are however based on produced streams, i.e. reported NGLs are only those condensates produced and sold separately. Reported oil reserves similarly include condensate produced in the oil stream. The main justification for this extra accounting of condensate volumes (outside production and reserves reporting) is said to obtain a correct reflection of the condensate material balance in reservoirs with very large gas caps. However, it does not add to the clarity of the audit trail no documents were sighted showing a clear connection between condensates and reported oil/NGL volumes. With the oil production of large gas cap reservoirs now coming to an end, thought should be given to either abandoning this complexity or at least provide a better audit trail on this aspect.

2

31/05/02

BSP-Covn

٠,.

. .

FOIA Confidential Treatment Requested

- 10. It is noted that there is no complete correspondence between reserves volumes and production forecasts in the Business Plan. This is largely due to the 'legacy' reserves, for which no forecasts are available. However, there are also other discrepancies (eq in Land ('Darat') Business Unit where the BP contains forecasts for which there are no reserves (only SFR) in the books. The impression is that some of this SFR is sufficiently mature to warrant inclusion as reserves. This should be rectified.
- 11. Fairley Baram undeveloped oil reserves appear to be positive at Proved level, but the Expectation undeveloped volume is zero. This is inconsistent and should be rectified.
- 12. Current BSP production licences expire as follows: Onshore and 'first offshore' (eg SWA): 22 Dec 2003, Second offshore area (eg FA): 31 Dec 2007,

31 Dec 2026. Third offshore area:

There is a right to extend these licences by two successive periods of 15 years, at terms and conditions to be agreed upon. Any failure to agree such new terms would still lead to extension by one period of 15 years largely on existing terms. Discussions on the new terms and conditions for the onshore and first offshore licences are currently underway. The approach by both parties is said to be positive and there are no indications that an acceptable set of new terms and conditions cannot be agreed with the Government. Hence, BSP management are fully confident that a new licence extension (and an option for a further extension in the future) will be granted.

- 13. Various documents describing the reserves determination process are in place (eg a DUR review procedure quide). The annual reserves review process is kicked off by a note by the reserves coordinator, setting out the requirements, target dates and responsibilities. All reserves changes are documented in reports or notes, depending on their complexity. Full field (or part-field) reviews and FDPs are documented comprehensively. An annual report 'End-year Resource Volumes for External and Internal reporting' is issued, together with a summary of results. This provides for an excellent audit trail and is fully commended.
  - In addition to these documents and in preparation for the audit, BSP had made a special effort to provide documents summarising the status of reserves in the three Asset Units (Land, East and West). Apart from a brief summary per field, these documents also contained overviews of proved, expectation reserves and SFR, historical reserves changes over the last few years etc. This was highly useful and is commended.
- 14. Consistency with field reserves and reserves changes was good. The one exception appeared to be the oil vs condensate issue (see 9 above).
- 15. Very good consistency with Finance reporting has been observed in the matters of annual production volumes and Unit of Production factors (UPF) for asset depreciation. This is seen to be the result of close cooperation between Finance Accounts and Reserves Coordination and is fully commended.

### Recommendations

BSP-Covn

- Replace the present method of deriving proved developed reserves from Expectation developed reserves (triangular distribution starting at Cum.prod + 0.5 \* [Exp'n dev'd - Cum.prod]) by multiplying Expectation reserves by a factor which gradually approaches or equals 1 with increasing reservoir maturity (defined as Cum.prod / Exp'n UR). The initial value of this factor may reflect the uncertainties in the individual reservoirs.
- 2. Assess undeveloped reserves separately (and not as stopgap between developed and total reserves). Estimate Porved undeveloped reserves by selecting a realistic P85 scenario of future activities, which scenario should be updated as more field performance is obtained and which should therefore grow closer to the Expectation scenario.
- Complete the recently started study into 'legacy' reserves and the appropriate level of Proved vs Expectation 3. reserves in line with the present plan per end 2002.
- 4. Address the issue of 'proved areas', in particular in relation to the non-allowed booking of volumes below 'lowest known hydrocarbons' (LKH, see guidelines), unless supported by strong evidence (eg. seismic amplitudes).
- 5. Review the need for maintaining the oil vs condensate split in reservoirs or improve the audit trail on this
- 6. Critically evaluate the justification for probabilistic addition of reservoir reserves to field level.
- 7. Review the appropriateness of booking some BP forecast volumes in Land/Darat BU as reserves and not as SFR as at present.
- Rectify Fairley Baram Proved (>0) vs Expectation (=0) undeveloped reserves. 8.

31/05/02

**FOIA Confidential** Treatment Requested

# . Attachment 2.1

# SEC RESERVES AUDIT - VOLUMES RECONCILIATION

| 2002      |  |
|-----------|--|
| BSP 1.1.2 |  |
| æ         |  |
|           |  |

|                                         |            |           |                                        |                                                   | roved             | ON / NO   | Proved Oil / NGL / Gas Reserves as at 1.1.2002 | Reservi                                                                         | es as at | 1.1.20   | 2       |              |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i           |                   |                |          |          |            |
|-----------------------------------------|------------|-----------|----------------------------------------|---------------------------------------------------|-------------------|-----------|------------------------------------------------|---------------------------------------------------------------------------------|----------|----------|---------|--------------|--------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|----------------|----------|----------|------------|
| Avea / Field                            | Proven     | e XD.     | Ě                                      |                                                   | Proved            |           | _                                              |                                                                                 | E E      |          | Exc     | Excl         |                    |           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -           | Ξ                 | 1.1.2002 1.    | 1,1,2002 | Prov.    | Prov.      |
| •                                       | <u>=</u>   | <u>.</u>  | Prod                                   | Ĕ,                                                |                   |           |                                                |                                                                                 |          | Tori     | _       |              | _                  |           | share %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | _                 | •              | N.EEDAS  | Res /    | Res /      |
|                                         |            |           | a Calea                                | Recov.                                            |                   |           | c                                              | -                                                                               | Lot      | -        |         |              | comid              | comto     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | á           | ÷                 | <u>}</u>       |          | Prod     | Prod       |
| ,                                       | 10°6 m3 /  | 10'5 m3 / | 10.6 m3.4                              | 10-6 m3 / 10-5 m3 / 10-6 m3 / 10-6 m3 / 10-6 m3 / | O*6 m3 / 1        | 10'6 m3 / | Ŝ                                              | į                                                                               | \$°      | **       | 7.04v.  | 7. Undv      | 10% m3 / 10% m3 // | 1. Tol.   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10^6        | 5-01              | 5,01           | 3,0,6    | , v      | e k        |
|                                         | 10/9 sm3   | 10*9 sm3  | 10*9 sm3                               | 10*9 sm3 1                                        | 1049 sm3 1049 sm3 | 049 sm3   |                                                |                                                                                 |          |          |         |              | 349 sm3 1C         | F9 8m3    | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /E#4        |                   |                | Sm3      |          |            |
|                                         |            |           |                                        |                                                   |                   |           |                                                |                                                                                 |          | ••••     |         |              |                    |           | <del>-</del> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1079 sm3 10 | 10*9 sm3 10*9 sm3 | 119 sm3 10     | 10~9 sm3 |          |            |
| 170                                     |            |           |                                        |                                                   |                   |           |                                                |                                                                                 |          | +        |         | +            |                    | T         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | +                 |                | T        | Ī        |            |
|                                         |            |           |                                        |                                                   |                   |           |                                                |                                                                                 |          |          |         |              |                    |           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ··                |                |          |          |            |
| SW. Ampa                                | 289.18     | 355.45    | 20.05                                  | 12.57                                             | 9 1               | 29.93     | %08<br>80%                                     | 94%                                                                             | 45%      | <u>*</u> |         | 100 0%       | 12.57              | 21 75     | \$000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 28        | 10.88             |                |          | ٧n       | <b>6</b> 0 |
| Ciner man fields - West                 | አ<br>ቻ     | 126.071   | 28.33                                  | 5.33                                              | 5.19              | 16.07     | *<br>*                                         | 822                                                                             | 36.5     |          |         | ,000<br>1000 | 5.35               | =         | 50 00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 267         | 5.57              |                |          | v        | 2          |
| Champion                                | 427,42     | 55.76     | 87.62                                  | 24.05                                             | 6.46              | 52.67     | 62%                                            | 95%                                                                             | 75%      |          |         | 100.00       | 24.05              | 20.51     | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.02       | 15.25             |                |          | ^        | ø          |
| Other main fields - East                | 25 52      | 240.68    | 26.36                                  | S, S                                              | 25 82             | 55.86     | 33%                                            | 57%                                                                             | 32%      |          |         | 100.00       | S                  | E         | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.75        | 16 66             |                |          | <b>с</b> | 7          |
| n dense                                 | 2501       | 20.00     | 107.00                                 | 5.80                                              | 8                 | 10.48     | ×06                                            | 3.56                                                                            | 43%      |          |         | 10000        | 5.80               | = 5       | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 90        | 6.55              |                |          | ~        | _          |
| Due 1 - spier mam refin                 | 24.69      | 2 1       | n<br>n                                 | 1.61                                              | 80                | 3.65      | <br>0                                          | 87%<br>8                                                                        | 28%      |          |         | 100.01       | 1.61               | 2.69      | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.81        | 1.35              |                |          | 2        | <b>E</b>   |
| Ciner sraud reids                       | . 4.<br>6. | 33.78     | 5                                      | 8 1                                               | <u>.</u>          | 6.4       | % '<br>'2'                                     | <b>%</b>                                                                        | 22,      |          |         | 100.0%       | 8                  | -         | 20.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000         | 0.85              |                |          |          | <u>.</u>   |
| Treate to the proposed all the proposed |            |           |                                        | <b>77</b>                                         |                   |           | 5                                              |                                                                                 | •        | 0        | 100.0%  | 100.0%       | 2,37               | 80.       | 20.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.1         | r)                |                |          |          |            |
| Total Oil (MMslb)                       | 1425,44    | 1848.59   | 436.53                                 | 59.24                                             | 62.06             | 181.14    | 711%                                           | %69                                                                             | 35%      | 33%      | 100.001 | %0:00t       | 59.24              | 121.30    | \$0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.62       | 80.65             | 29.62          | 60.65    | 60       | 2          |
|                                         |            |           | 1                                      |                                                   | 121.30            |           |                                                |                                                                                 |          |          |         |              |                    | _         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                   |                |          |          |            |
| NG!                                     |            |           | ************************************** |                                                   |                   | - <b></b> |                                                |                                                                                 |          |          |         |              |                    |           | <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                   |                |          |          |            |
| SW Ampa                                 | 62,51      | 79.06     | 15,75                                  | 6.46                                              | 4.59              | 14.79     | 27%                                            | #39%                                                                            | 336      |          | 100 005 |              | 979                | 9         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,           | 5                 |                |          | :        | ;          |
| Other main fields - West                | 12.09      |           | 4.07                                   | . 044                                             | 1.36              | 3.43      | *                                              | <b>2</b>                                                                        | 3        |          |         | 100.00       |                    | 3 0       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0         | 3.06              |                |          | 2 .      | ~ ·        |
| Champion                                | 3.54       | •         | 0.40                                   | 0.32                                              | 0.45              | 1.37      | 22%                                            | 62%                                                                             | 24%      |          |         | 2 2          |                    | , ,       | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 5         | 2 2               |                |          | ۶ ۽      | 5 5        |
| Champion West                           | 12.14      | 20.03     | 0.35                                   | 0.10                                              | 4.27              | 6.75      | 2%                                             | 10%                                                                             | 3,80     | ×90      | 1000    | 2000         | 0 0                | 4         | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 0         | , r               |                |          | ě        | 9          |
| Other main fields - East                | 577        |           | 0.48                                   | 0.67                                              | 6                 | 336       | 12% +                                          | 37.6                                                                            | 41%      |          |         | 2000         | 0.67               | 2.58      | %00 DS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2           | 200               |                |          |          |            |
| Contra                                  | 6.0        |           | 0.53                                   | 8                                                 | . 0.14            | 0.20      | + 72%                                          | 79%                                                                             | 63%      |          |         | 100.0%       | 80                 | 2.0       | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 900         | 200               |                |          |          |            |
| Card Base mends - Land                  | 10.20      | 0.40      | 2                                      | 000                                               | 0.05              | 0.06      | 69%                                            | 63%                                                                             | r<br>K   | 48%      |         | 100.0%       | 90                 | 800       | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8           | 0.0               |                |          |          | ,          |
| Other email folds                       | 3 5        |           | 06.0                                   | 6.0                                               | 8 :               | 6.45      | 12%                                            | .00<br>%                                                                        | ٥        |          | ٠       | 100.0%       | 6.46               | 646       | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.23        | 3.3               |                |          |          | 2          |
| Condensate produced in pit afream       | ?          |           |                                        | 3 5                                               | 9 7               | 200       | y . (                                          | Š                                                                               | 21%      |          |         | 100.07       | 00                 | 2.46      | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00        | 1.23              |                |          |          |            |
|                                         | ٠          | ,         | ;                                      | 7                                                 | ř                 |           | •<br>•                                         | ž<br>P                                                                          | ۰        | о.<br>•  | 1000%   | 50.0%<br>%   | -237               | 8         | \$0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | £.          | <b>3</b> ,        |                |          | 3        |            |
| · Total NGL (MMstb)                     | 108.85     | . 147.51  | 22.61                                  | 12.09                                             | 11.09             | 40.40     | 34.00                                          | 76%                                                                             | 31.50    | 43%      | 100.0%  | 100.0%       | 12.08              | 73.17     | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0.8       | 11.59             | 5.04           | 11.59    | t        | <b>5</b> 2 |
| Gas (Dry. sales gas volumes)            | 3          |           |                                        |                                                   |                   | T         |                                                |                                                                                 |          | +        |         | 1            |                    | $\dagger$ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 1                 |                | 1        |          |            |
|                                         |            |           |                                        |                                                   | -                 |           |                                                | ,                                                                               |          |          |         |              |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                   |                |          |          | ٠          |
| Other Press Collaboration               | 347.564    | 402.402   | 200.792                                | 60.252                                            | 32.747            | 128.327   | 61%                                            | %5B                                                                             | 67%      |          | 92.3%   | 92.3%        | 55.54              | 85,38     | 20.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.83       | 25                |                | _        | ٠ ç      | 2          |
| Chief main lieus - west                 | 36.75      | 45.783    | 20.08                                  | 5.295                                             | 27.478            | 46.799    | 87%                                            | 71%                                                                             |          |          | 92.3%   | 92.3%        | 68                 | 8         | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.44        | 4                 |                |          | 2 4      | 2 %        |
| Charles When                            | 3 5        | 807.5     | 2.308                                  | 5.085                                             | 3014              | 12.791    | 49%                                            | <b>2</b>                                                                        | 45%      | 5.4      | 92.3%   | 92.3%        | 3.77               | 6.56      | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.08        | 3 2               |                |          |          | ( )        |
| Other resis States                      | 100        |           | 0,00                                   | 5.923                                             | 29.569            | 47,351    | *                                              | 18%                                                                             | 5        |          | 92.3%   | 92.3%        | 2.42               | 28.73     | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7           | 14.85             |                |          | , u      | 2 12       |
| Saria                                   | 30.000     |           | 0000                                   | 7.77                                              | 27.382            | 52.707    |                                                | 37.                                                                             | ž        |          | 92.3%   | 92.3%        | 6.51               | 33.81     | %D0'06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,7         | 15.90             |                |          |          | ; ?        |
| Other main fields . Land                | 5.436      | 7 78.4    | 3 705                                  | K.0.4                                             | 2.013             | 2.28      | 89%                                            | 86                                                                              | 105%     |          | 92.3%   | 92.3%        | 1 92               | 3,78      | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96.0        | 68                |                |          | =        | 3 :        |
| ורפ                                     | -          |           | 0.700                                  | 707                                               | 7747              | 1197      | %0¢                                            | *                                                                               | 65%      |          | 92.3%   | 92.3%        | 30                 | 1.94      | 20.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.00       | 0.97              |                |          | :        | : :        |
| Other minor fields                      | 30.665     | 48.915    |                                        | 0.000                                             | 14.507            | 2,005     | <b>%</b> %                                     | %<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | D ;      | 0        | 92.3%   | 92.3%        | 4.42               | 4.42      | 50 00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.21       | -2.21             |                |          | ••••     | •          |
| ,                                       |            |           |                                        |                                                   |                   |           | :                                              | 3                                                                               | Ţ.       | ?        | 32.37   | 34. J.       | 90.0               | 3.40      | %<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00 | 0.00        | 6.70              |                |          | ,        |            |
| (colar cas (10.9 sm3)                   | 683.781    | 881.572   | 326.649                                | 79,438                                            | 138,148           | 314.262   | 51%                                            | 75%                                                                             | 68%      | 74%      | 92.3%   | 92.3%        | 73.354             | 200.921   | 20 00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.677      | 100.461           | 36.567 100.481 | 00.461   | ~        | 7          |
|                                         |            |           |                                        |                                                   |                   |           |                                                |                                                                                 |          | 1        |         | 1            |                    | _         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | _                 |                |          |          |            |

Conversion factors used by SIEP 1stb = , 0.159 m3 1scf = 0.0283 sm3

100% volumes from Report no. 1,1' (Att.) from CSS NFF 2002/051 (except condensate-se-cit volumes, for which no evidence Overall, good match Audit Trait:

BSP.AIIZ, ResysToff

| SEC RESERVES AUDIT - VOLUMES RECONCILIATION | BSP 1.1.2002 |
|---------------------------------------------|--------------|
|                                             |              |

Attachment 2.2

| 1.1.2001   Reciasins   Recovery   Discov's   place   place   Coverdion   254   2011   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   254   25   | roved Developed Reserves                                                 | 20.00        | Revisons/ | Improved                        | Extens./                             | Purchase in S                            | Sales in-                             | ens./ Purchase in Sales in New Ponducto | Productio | Prov. Dec | Paul Fourth                            | Mark Co.                        | Chall Carrier       | 2 1014                                       | May Chair                                    |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------|-----------|---------------------------------|--------------------------------------|------------------------------------------|---------------------------------------|-----------------------------------------|-----------|-----------|----------------------------------------|---------------------------------|---------------------|----------------------------------------------|----------------------------------------------|--------------------|
| Compared by Septimes   | roved Developed Reserves                                                 | 1.1.2001     | Reclasins | Recovery                        | Discov's                             |                                          | Desce                                 | Deverd<br>Reserves                      | 2001      |           | Share %                                | Share %<br>Share %<br>2001 Prod | Share %<br>1.1.2002 | Net Shell<br>Equity<br>1.1 2001<br>(10*5 m3) | Net Sheil<br>Equity<br>1 1.2002<br>(10'6 m3) |                    |
| Control   Cont   |                                                                          |              |           |                                 |                                      |                                          |                                       |                                         |           |           |                                        | :                               | :                   |                                              |                                              |                    |
| Color   Colo   | SW Ampa                                                                  |              | -0.71     |                                 |                                      |                                          |                                       | 3.80                                    | 2.55      | 12.57     | 20.00%                                 | %00.09°                         | 20 00%              | 000                                          | 6.28                                         |                    |
| of stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other main fields - West                                                 |              | 223       |                                 |                                      |                                          |                                       | •••••                                   | 0.90      | 5.35      | \$0.00%                                | \$00.05                         | 20.00%              | 0.0                                          | 2.87                                         |                    |
| of stream    0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Other main fields . East                                                 |              | 10.5      |                                 |                                      |                                          |                                       | 2.52                                    | 3.25      | 25.55     | 50.00%                                 | 50.00%                          | 50.00%              | 000                                          | 12.02                                        |                    |
| of stream 0.00   62.47   1.78   1.78   1.78   1.29   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20  | Seria<br>Other main Falls 1995                                           |              | 2.74      |                                 |                                      |                                          |                                       | 0.50                                    | 67.0      | 2.80      | \$0.00%                                | 50.00%                          | \$00.00             | 800                                          | 2.90                                         |                    |
| Trees  Tr | Other small felds                                                        |              | 0         |                                 |                                      |                                          |                                       | 0.30                                    | 0.32      | 1.61      | 50.00%                                 | 50.00%                          | 50.00%              | 8 6                                          | 0.61                                         |                    |
| 1, 1, 2, 3, 4, 1, 2, 4, 1, 2, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Condensate produced in oil stream                                        |              |           |                                 |                                      |                                          |                                       | i girigge in direkt                     | 0.12      | 237       | 50.00%                                 | 50.00%                          | 50.00%              | 00.0                                         | 1.19                                         |                    |
| The fields - Legal Reserves and reds - West (1.5) (1.76) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) ( | Prov. Dev. Resvs<br>(10°6 m3)                                            | 0.00         |           |                                 |                                      |                                          |                                       | 13.7                                    | 10.34     | 59.24     | 0                                      | 50.00%                          | 50.00%              | 00.00                                        | 29.62                                        |                    |
| main fields - West         1,57         1,78         1,78         1,78         1,78         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,79         1,70         2,50         2,50         2,50         1,79         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50         2,50 <td>Proved Undeveloped Reserv</td> <td>Sa.</td> <td></td> <td></td> <td>į</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Proved Undeveloped Reserv                                                | Sa.          |           |                                 | į                                    |                                          |                                       |                                         |           |           |                                        |                                 |                     |                                              |                                              |                    |
| 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SW Ampa                                                                  |              | 1.57      | 1.78                            |                                      |                                          |                                       |                                         |           | 01.0      | 50 BO%                                 |                                 | 75 DO 47            | ç                                            | 9 40                                         | L_                 |
| main fields : East         0.00         4.18         2.54         50.00%           main fields : Fast         0.01         2.37         1.29         0.00         0.00         7.30         50.00%           main fields small fields         main fields         1.29         0.00         0.00         0.00         0.00%         0.00%         0.00%           most are produced in oil stream         5.41.2         2.47         5.48         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other main fields - West<br>Champion                                     |              | 2.15      | 0.52                            |                                      |                                          | <u> </u>                              |                                         |           | 5.79      | 50.00%                                 |                                 | SO 00%              |                                              | 2.89                                         |                    |
| main fields - Land         0.37         1.29         1.29         7.30         50.00%           small fields small fletds         3.65         2.47         5.48         0.00         0.00         3.55         3.71         50.00%           m3j         m3j         m3 stream         0.00         3.61         2.47         5.48         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>Other main fields - East</td> <td></td> <td>0.90</td> <td></td> <td>4.18</td> <td></td> <td>*****</td> <td></td> <td></td> <td>25.85</td> <td>**************************************</td> <td></td> <td>50.00%</td> <td></td> <td>3.23</td> <td>200</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Other main fields - East                                                 |              | 0.90      |                                 | 4.18                                 |                                          | *****                                 |                                         |           | 25.85     | ************************************** |                                 | 50.00%              |                                              | 3.23                                         | 200                |
| 1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12      | Sens<br>Other mate fetts - Land                                          |              | 0.37      |                                 | 65.                                  |                                          | <u></u>                               |                                         |           | 7.30      | 50.00                                  |                                 | 20.00%              |                                              | 3,65                                         | 3,65 SMR appraisal |
| 0.00   2.67   2.47   5.46   0.00   0.00   2.65   0.00%   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00     | Other small fields                                                       |              | 7         |                                 |                                      |                                          | <u> </u>                              |                                         |           | 1.08      | 50.00%                                 |                                 | 50.00%              |                                              | 45.5                                         |                    |
| 0.00 2.67 2.67 5.48 0.00 0.00 3.55 5.17 23.62 1.25 0.00 0.00 0.00 2.00 2.67 5.17 23.62 1.25 0.00 0.00 2.00 2.00 2.00 2.00 2.00 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | condensate produced in all stream                                        |              |           |                                 |                                      |                                          | · · · · · · · · · · · · · · · · · · · |                                         |           | 4.71      | \$0.00%                                |                                 | 50.00%              | 0.00                                         | 2.36                                         |                    |
| 0.00 2.87 2.962 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prov.Undev.Res<br>10^5 m3}                                               | 0.00         |           |                                 | 5.48                                 | 9.00                                     | 0.00                                  |                                         |           | 62.06     | •                                      |                                 | 20.00%              | 0.00                                         | 31.03                                        |                    |
| 0.00 2.87 2.962 2.87 2.74 0.00 0.00 5.17 59.62 2.865 2.17 29.62 2.87 2.74 0.00 0.00 0.00 0.00 5.17 69.65 2.17 29.62 2.87 2.74 0.00 0.00 0.00 0.00 0.00 0.00 2.87 2.17 29.62 2.87 2.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |              |           |                                 |                                      |                                          |                                       |                                         |           |           |                                        |                                 |                     |                                              |                                              |                    |
| Res         28.40         2.82         3.57         5.17         2962           1 Res         57.12         4.63         1.234         2.74         5.17         59.62           1 sign lactors used by BSP         6.159 m3         1 sign lactors used by SIEP         6.159 m3         1 sign lactors used by SIEP           1 sm3         1 sm3         1 sign lactors used by SIEP         6.159 m3         1 sign lactors used by SIEP           1 sm3         1 sm3         1 sm3         1 sign lactors used by SIEP         6.159 m3           1 sm3         1 sm3         1 sign lactors used by SIEP         6.159 m3           1 sm3         1 sm3         1 sign lactors used by SIEP           1 sm3         1 sm3         1 sign lactors used by SIEP           1 sm3         1 sm3         1 sign lactors used by SIEP           1 sm3         1 sm3         1 sm3           1 sm3         1 sm3         1 sign lactors used by SIEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Net Group Equity Proved Developed Reserves Proved Total Reserves 10*5 m3 | 9.00<br>9.00 |           |                                 | 2.74                                 | 0.00                                     |                                       | 3.55                                    | 5.17      | 29.62     | 1.25<br>3.49                           |                                 |                     |                                              |                                              |                    |
| Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000 Submission<br>Prov Dev Res                                          | 2,00         |           |                                 |                                      |                                          | 1                                     |                                         |           |           | •                                      |                                 |                     |                                              |                                              |                    |
| Com<br>1 sm3 1 sub<br>1 sm3 1 sm3<br>Audit 7rail: Overail, fair matc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prov. Tot'l Res<br>10^6 mJ                                               | 57.12        |           |                                 |                                      |                                          | $\prod$                               | 3.57                                    | 5.17      | 29.62     | 29.62<br>60.65                         |                                 |                     |                                              |                                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rsion factors used                                                       | <b>.</b>     | т3<br>sπ3 |                                 | Conversion far<br>1 slb =<br>1 scf = | ctors used by S<br>0.159 mi<br>0.0283 st | NEP.                                  |                                         |           |           |                                        |                                 |                     |                                              |                                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | Audit Trail: |           | Overall, fair<br>1.1.2001 field | match.<br>3 volumes nos              | t available                              |                                       |                                         |           |           |                                        |                                 |                     |                                              |                                              |                    |
| et Change (Bit C. ). USB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RSF 7 DiBecuChe                                                          |              |           |                                 |                                      |                                          |                                       |                                         |           |           |                                        |                                 |                     |                                              |                                              |                    |

FOIA Confidential Treatment Requested

# SEC RESERVES AUDIT - VOLUMES RECONCILIATION BSP 1.1.2002

| Foreign   Prof. No.     |                                                             |                          |          |             |                      |                  |         |                               |             |               |                             |                      |                                  |                |                                              |          |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------|----------|-------------|----------------------|------------------|---------|-------------------------------|-------------|---------------|-----------------------------|----------------------|----------------------------------|----------------|----------------------------------------------|----------|-----------|
| Secretary   Secr  | Field                                                       | Prov. Res.<br>1.1.2001   | Revisons |             | Extens /<br>Discov's | 1                |         | tew Develd Reserves (Trains). |             |               | Shell Equity Share % 1.2001 | ihell Equily Share % |                                  | 1              | Nel Shell<br>Equity<br>1.1.2002<br>(1076 m3) | Comments |           |
| Columbia   | oved Developed Reserves                                     | <b>.</b>                 |          | ÷           |                      |                  |         |                               |             |               |                             |                      |                                  | •              | ·                                            |          |           |
| Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SW Ampa                                                     |                          | Ö.       |             |                      |                  |         | 0.08                          | 25.0        | 8.46<br>46    | \$0.00%                     | %00.05               | 50.00%                           | 80             | 3.23                                         |          |           |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er masn kelds - Wiest<br>Implan                             |                          | ợ        |             |                      |                  |         |                               | 0.00        | 0.44          | \$0.00%<br>\$0.00%          | \$000%               | 50.00<br>50.00<br>50.00<br>50.00 | 6.00<br>60.00  | 0.22                                         |          |           |
| Control   Cont  | mpion-Wes!                                                  |                          | ę,       |             |                      |                  |         |                               | 0.03        | 0.10          | 50.00%                      | 50.00%               | 20.00%                           | 0.00           | 0.05                                         |          |           |
| The fields, Livid Transfer of State of | st main fields - East                                       |                          |          |             |                      |                  |         |                               | 0.00        | 29.0          | 50.00%                      | 50.00%               | 50.00%                           | 0.00           | 0,34                                         |          |           |
| Control fields   Cont  | er main fields - Land                                       |                          |          |             |                      |                  |         |                               | 0.0         | 10.0          | %00.0S                      | %00 OS               | 50.00%                           | 00.0           | 80.0                                         |          |           |
| Color   1   Color   1   Color   Colo  | er small fields                                             |                          |          |             |                      |                  |         |                               | 0.45        | 9 6           | \$0.00%<br>\$0.00%          | 50 00%<br>50 50%     | 50.00%                           | 0.00           | 323                                          |          |           |
| Comparison   Com  | densale produced in oil stream                              |                          |          |             |                      |                  |         |                               | -0.12       | -2.37         | \$0.00%                     | \$0.00%              | \$0.00%                          | 0.00           | -1.19                                        |          |           |
| of Reserves         C-21         GDS         CDS         CDS <t< td=""><td>(Dev Resvs<br/>6 m3)</td><td>0.00</td><td></td><td>-</td><td></td><td></td><td></td><td>90.0</td><td>16.0</td><td>12.09</td><td>0</td><td>\$0.00%</td><td>20 00%</td><td>00'0</td><td><del>9</del>0.9</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Dev Resvs<br>6 m3)                                         | 0.00                     |          | -           |                      |                  |         | 90.0                          | 16.0        | 12.09         | 0                           | \$0.00%              | 20 00%                           | 00'0           | <del>9</del> 0.9                             |          |           |
| 11   11   12   13   13   13   14   14   14   14   14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | wed Undeveloped Reser                                       | sax                      |          | ٠           |                      |                  | -       |                               | -           |               |                             |                      |                                  |                |                                              |          | ]         |
| Control   Cont  | d annual                                                    |                          |          |             |                      |                  | 1000    |                               |             |               |                             |                      |                                  |                |                                              |          | $\Gamma$  |
| 1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00  | rmain fields - West                                         |                          | 0 0      |             |                      |                  |         |                               |             | 98.4          | \$0.00%<br>\$0.00%          |                      | \$0.00%                          | <b>0</b> 0     | 2.30                                         |          | <u></u> . |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mplen                                                       | 3                        | 0.0      |             | •                    |                  | 2000    |                               |             | 0.45          | \$0.00%                     |                      | 20.00%                           | 8 6            | 0.22                                         |          |           |
| Marker   M  | mplon west<br>er main fields - East                         |                          | ο ο ο    |             |                      |                  |         |                               |             | 12.4          | *00 09                      |                      | \$0.00%                          | 000            | 2.13                                         |          |           |
| Note     |                                                             |                          | 20       | . 0         |                      | ,                | SS 500. |                               |             |               | #0004<br>-                  |                      | 20.00                            | 000            | 0.96                                         |          |           |
| Figure   F  | ir main fields - Land                                       |                          | 26       | ·           |                      |                  | -       |                               |             | 0.02          | \$0.00%                     |                      | 50.00%                           | 900            | 00                                           |          |           |
| Thres 0 DD 0 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er small fields                                             |                          |          |             |                      |                  |         | -                             |             | 00.0          | ¥00.06                      |                      | 50.00%                           | 0.00           | 0.00                                         |          |           |
| Fires 0.00 -0.05 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | densale produced in oil stream                              | ************************ |          |             |                      |                  | 2000    |                               |             | 9 7 4         | 50.00%<br>50.00%            |                      | 50.00%                           | 00 00<br>00 00 | 1.23                                         |          |           |
| Fives 0 000 -0.25 0.05 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                          |          |             |                      |                  |         |                               |             | 1             | 366                         |                      |                                  |                |                                              |          |           |
| 12.14   0.15   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00    | Judev.Res<br>6 m3]                                          | 90 a                     |          |             | 6                    | ]                | 0.00    |                               |             | 11.09         | •                           |                      | 50.00%                           | 0.00           | 5.54                                         |          |           |
| serves         0.00         0.05         0.02         0.00         0.04         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         0.16         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                          |          |             |                      |                  |         |                               |             |               |                             |                      |                                  |                |                                              |          | 14        |
| 12.14   0.15   0.02    1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.59   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   | Group Equity red Developed Reserves red Talst Reserves 5 m3 | 90.0                     |          | S 0.02      | 0                    | 00.0             | 00.0    | <b>\$0.0</b>                  | 0.45        | 6.04<br>11.59 | 0.46                        |                      |                                  |                |                                              |          |           |
| 12.14   0.05   0.02   0.03   0.42   0.04   0.05   0.04   0.04   0.05   0.04   0.05   0.04   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05    | 1 Submission                                                |                          |          | ſ           |                      |                  |         |                               |             |               |                             |                      |                                  |                |                                              |          |           |
| 12.14   40.15   0.02   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59   11.59  | V.Dev.Res                                                   | 6.48                     |          |             |                      |                  | h       | 0.03                          | 0.42        | 90.9          | ş                           |                      |                                  |                |                                              |          |           |
| rersion factors used by BSP  Conversion factors used by SIEP:  1 sm3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v.Tot'l Res<br>6 m3                                         | 12.1                     |          |             |                      |                  |         |                               | 0.42        | 11.59         | 11.59                       | •                    |                                  |                |                                              |          |           |
| Conversion factors used by SREP:  1 stb = 0.159 m3  1 scf = 0.0283 sm3  Audit Trait: Fair match 1.1.2001 field volumes not available.  Page 3 ol 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             | 1                        |          |             |                      |                  |         |                               |             |               |                             |                      |                                  |                |                                              |          |           |
| Audit Trail: Fair match 1.1.2001 field volumes not available. Page 3 ol 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conversion factors used by BSP 1 m3 ≈                       |                          | E<br>E   |             | Conversion f         | actors used by S |         |                               |             |               |                             |                      |                                  |                |                                              |          |           |
| Audit Trail: Pair match 1.1.2001 field volumes not available. Page 3.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Sm3 1                                                     |                          | sm3      |             | - 5cf =              | 0.0283           | , E     |                               |             |               |                             |                      |                                  |                |                                              |          |           |
| 1,1,2001 feld volumes not available. Page 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | Audit Trail:             |          | Fair match  |                      | :                |         |                               |             |               |                             |                      |                                  |                |                                              |          |           |
| Page 3 ol 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                           |                          |          | 1,1,2001 Se |                      | of available.    |         |                               | -           |               |                             |                      |                                  |                |                                              | •        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8SP-AII2, NGLResvChg                                        |                          |          |             |                      | . •              |         |                               | Page 3 ol 4 |               |                             |                      |                                  |                | `,                                           | - "      | 9         |

FOIA Confidential Treatment Requested

| SEC RESERVES AUDIT - VOLUMES RECONCILIATION | BSP 1.1,2002 |
|---------------------------------------------|--------------|
|---------------------------------------------|--------------|

| Flesd Prov Res. | 1.1.2001                                                                                         | Proved Developed Reserves | SW Anos | Other main fields - West | Champton       | Orber grein fields - Mars | Serie  | Other main lields - Land | Other minor fields |        | 0.000<br>(10°9 sm3) | Proved Undeveloped Reserves |         | Other main fleids - West | Chemplon         | Champon-West<br>Other mein fields - Faci | E-S                        | Other main Refds - Land | Other mittor fields |        | Tot1 Prov Res 0.000 (10°8 sm3) |        | Net Graup Equity Prov. Dev. Res | Prov Tot! Res 0.000                                 | 2000      | Prov. Dev. Res 37.929                  |                   | Net Green Foreits |                                                    | 10/9 Nm3 @ 9500 NCalAlm3 | 2001 Submission | Prov. Dev. Res 39,374                                                                                                              | 500 KCalinmo |   |
|-----------------|--------------------------------------------------------------------------------------------------|---------------------------|---------|--------------------------|----------------|---------------------------|--------|--------------------------|--------------------|--------|---------------------|-----------------------------|---------|--------------------------|------------------|------------------------------------------|----------------------------|-------------------------|---------------------|--------|--------------------------------|--------|---------------------------------|-----------------------------------------------------|-----------|----------------------------------------|-------------------|-------------------|----------------------------------------------------|--------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|---|
| <b>}~~</b>      | Redasins                                                                                         |                           |         | , F                      | 90             | 1.569                     | 4 6    | 6600                     |                    |        | 3.592               |                             |         | 555                      | 6                | 27.                                      | 2 6                        | 6                       |                     |        | 2.166                          |        |                                 | 2.648                                               |           | 1.685                                  |                   |                   |                                                    | 2.785                    |                 | 2.240                                                                                                                              |              |   |
| s/ Improved     |                                                                                                  |                           |         | . 10                     | 7              | 6                         | 35     | . 6                      |                    |        | 03<br>9.2           |                             |         | 45 0.665                 | 68 0.375         |                                          | 2 3                        | 37                      |                     |        | 1,040                          |        |                                 | 0.480                                               |           | 120                                    | 47 0.480          |                   |                                                    | 0.501                    |                 |                                                                                                                                    | 30 0.517     |   |
| 1               | y Obcov's                                                                                        |                           |         |                          |                |                           |        |                          |                    |        |                     |                             |         | <u> </u>                 | يخ.              |                                          | 5,915                      |                         | ,                   |        | 518.9                          |        | 1 0                             | 3.183                                               |           |                                        | 3.257             |                   |                                                    | 3.441                    |                 |                                                                                                                                    | 3,509        |   |
| S. Care Marie   | P A                                                                                              |                           |         |                          |                |                           |        |                          |                    |        |                     |                             |         |                          |                  |                                          |                            |                         |                     |        | c.000                          |        |                                 | ă                                                   |           |                                        |                   |                   | 8000                                               |                          |                 |                                                                                                                                    |              |   |
|                 | place                                                                                            |                           |         |                          |                |                           |        |                          |                    |        |                     |                             |         |                          |                  |                                          |                            |                         |                     |        | 0.000                          |        |                                 | 000                                                 |           | •                                      |                   |                   | 000000000000000000000000000000000000000            | 000 0 0001               |                 | J                                                                                                                                  |              |   |
|                 | Devel'd<br>Reserves<br>(Trans).                                                                  |                           |         | 3,172                    | 0.376          |                           |        | 0.179                    |                    |        | 3.860               |                             |         |                          |                  |                                          |                            |                         |                     |        |                                |        |                                 | 1,782                                               |           |                                        | 2                 |                   |                                                    | 906                      |                 | 1.923                                                                                                                              |              |   |
|                 | Product'n<br>2001                                                                                |                           |         | 0 70                     | 2000           | 0.561                     | 1.344  | 0.183                    | 0 337              |        | 10.125              |                             |         |                          |                  |                                          |                            |                         |                     |        |                                |        |                                 | 4.658                                               | 1         |                                        | 4.772             |                   |                                                    | 4.974                    |                 | 5.110                                                                                                                              | 5.110        |   |
| - 7             | Prov.Rvs<br>1.1.2002                                                                             |                           |         | 50.252                   | 0.63.          | 2.625                     | B.217  | 2079                     | ¥.792              | 000    | 78.43B              |                             |         | 32 747                   | 27,478           | 29.589                                   | 27.392                     | 2.019                   | 0:00                | 14.507 | 136,148                        |        |                                 | 36.677                                              |           |                                        | 100.461           |                   |                                                    | 39.218                   |                 | 38.427                                                                                                                             | 107.875      |   |
|                 | Shell Equity Shell Equity Shell Equity<br>Share % Share % Share %<br>1.1.2001 2001 Prod 1.1.2002 |                           |         | 45 65%                   | 45.55%         | 45 65%                    | 46.55% | 45.65%                   | 46.65%             | 48,65% | ×.                  |                             |         | 46.65%                   | 48.55%<br>48.55% | 46.65%                                   | 46.65%                     | 46 85%                  | 46.55%              | 46.65% | *                              |        |                                 | 1.217                                               |           |                                        | 35,677<br>100,461 |                   |                                                    | 3.75<br>4.75             |                 | 38 427                                                                                                                             | 107.876      |   |
|                 | Shelf Equity St<br>Share %<br>2001 Prod                                                          |                           |         | 4.<br>8.<br>1.           | 4<br>5<br>7, 1 | , se                      | 40     | * :                      | 7 X                | 45,%   | \$.<br>%            |                             | 100.000 |                          |                  |                                          |                            |                         |                     |        |                                |        | č                               | •                                                   |           | (* 9)<br>(* 9)                         |                   |                   | ğ                                                  | ₹                        | ĵ               | īĀ                                                                                                                                 |              |   |
|                 |                                                                                                  |                           | -       | 46 17%                   | 9              | 2 2                       | 46.17% | 46 17%                   | 46.17%             | 46.17% | 46.17%              | 1                           |         | 46.17%                   | 46.17%           | 46.17%                                   | 48.17%                     | 46.17%                  | 46.17%              | 48 17% | A 17 A                         |        |                                 | - F                                                 |           |                                        | b 8               | 8                 | d avg GHV of                                       | Audit Trail:             | 1               | ight mesena.<br>Is-match in r                                                                                                      |              | • |
|                 | Met Sheit Net Sheit<br>Equity Equity<br>1 5,2001 1,1,2002<br>(10°8 sm3) (10°9 sm3)               |                           |         | 0000                     | 0000           | 0000                      | 0.000  | 0.000                    | 0000               | 0.000  | 0.000               |                             |         | 0.000                    | 0.00             | 000                                      | 000                        | 0.00                    | 000                 | 0.00   | 80                             |        |                                 | 1 m3 m 1 m3                                         |           | 1.0735097 NmJ@95<br>10761 Xcalinum     | 10201 healtsm3    | 42.71 MJ/sm3      | 1.46 B                                             |                          | 1               | ch in produc                                                                                                                       |              |   |
|                 |                                                                                                  |                           | -       | 27.819                   | 2.445          | 1.000                     | 4.255  | 0 980                    | 2.272              | 0000   | 36.677              | 1                           |         | 15.119                   | 12.687           | 1 392                                    | 12,647                     | 0.932                   | 000                 | 869.9  | 100                            | 3      |                                 | ž e s                                               | 5 2       | NmJ@9500<br>Realinhm3                  | Men3              | lsa3              | 1146 Bluisci<br>1140 Bluisci from above field date |                          |                 | Sugat mis-match in production and end-year Nm3 volumes.<br>Mis-match in revisions probably due to different method of calculation. |              |   |
|                 | (Blukkel)                                                                                        |                           |         | 1150                     | 1147           | 25.5                      | 50     | 1,80                     | 139                | 1(39   | 175                 | -                           |         | 1150                     | 113              | 1050                                     | 5 5                        | 150                     | 96                  | 1138   | :                              |        | •                               | ន                                                   |           | P.                                     |                   |                   | we Beid date                                       |                          | :               | year Nm3 v.<br>different met                                                                                                       |              |   |
|                 | Lact Shell /<br>Equity<br>1,1 2001<br>(10°9 11m3 (1                                              |                           |         | 0.000                    | 0.000          | 9 5                       | 900    | 0.000                    | 000                | 0.000  | 0000                |                             |         | 0000                     | 0 000            | 0.00                                     | 000                        | 0.000                   | 900                 | 0.000  |                                | 9      |                                 | mversion (ac                                        | 1 sm3 =   | and 1 sm3 a                            | 6 1               | 5 6               |                                                    |                          |                 | olumes.<br>thad of calc                                                                                                            |              |   |
|                 | Vet Sheft<br>Equity<br>1.1 2002<br>(10'9 Nm:3                                                    |                           |         | 29 986                   | 2 528          | 1 525                     | 4,408  | 1 062                    | -2.162             | 0.000  | 39.215              |                             |         | 16.297                   | 13,235           | 1,370                                    | 13 532 Bugan appr + discov | 1.031                   | 0.70                | 7 151  |                                | 06.133 |                                 | Conversion (actors used by SIEP<br>1 sib = 0.159 m3 | 0.948 Nm3 | 0.948 Pirat (\$ 9500<br>9500 kraftimi. | 9006 kcalfsm3     | 37.71 M/Usm       | 1011 Shrised                                       |                          |                 | ułatfon.                                                                                                                           |              |   |
|                 | Cammaris                                                                                         |                           |         |                          |                |                           |        |                          |                    |        |                     |                             |         |                          |                  |                                          | appr + disco               |                         |                     |        |                                |        |                                 |                                                     | •         | 39 9500                                | 120               | 2 m               |                                                    | ·.                       |                 |                                                                                                                                    |              |   |

FOIA Confidential
Treatment Requested

CHECKLIST SEC RESERVES AUDITS

Attachment 3

| Dimensi<br>1       | ANY: BRUNEI SHELL PETROLEUM Sdn Bhd  ons (100% field figures as at 1.1.2002):  1.1.2002 Proved Oil Reserves 1.1.2002 Proved Goil Reserves 2000 Oil Production  1.1.2002 Proved Gas Reserves 1.1.2002 Proved Developed Gas Reserves 2000 Gas Production  Number of fields in area Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Averag<br>0 | / FIELD: ALL FIELDS ,  ge Group share: .%  10^6 m3 (Group share 10^6 m3)  10^6 m3 (Group share 10^6 m3)  10^3 m3/d (Group share 10^8 m3)  10^9 sm3 (Group share 10^9 sm3)  10^9 sm3 (Group share 10^9 sm3)  10^9 sm3 (Group share 10^9 sm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 1                | 1.1.2002 Proved Oil Reserves 1.1.2002 Proved Developed Oil Reserves 2000 Oil Production 1.1.2002 Proved Gas Reserves 1.1.2002 Proved Developed Gas Reserves 2000 Gas Production Number of fields in area Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0           | 10^6 m3 (Group share 10^6 m3) 10^6 m3 (Group share 10^6 m3) 10^6 m3 (Group share 10^6 m3) 10^3 m3/d (Group share 10^3 m3/d) 10^9 sm3 (Group share 10^9 sm3) 10^9 sm3 (Group share 10^9 sm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | 1.1.2002 Proved Developed Oil Reserves<br>2000 Oil Production<br>1.1.2002 Proved Gas Reserves<br>1.1.2002 Proved Developed Gas Reserves<br>2000 Gas Production<br>Number of fields in area<br>Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0           | 10^6 m3 (Group share 10^6 m3)<br>10^6 m3 (Group share 10^6 m3)<br>10^3 m3/d (Group share 10^3 m3/d)<br>10^9 sm3 (Group share 10^9 sm3)<br>10^9 sm3 (Group share 10^9 sm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | 2000 Oil Production  1.1,2002 Proved Gas Reserves  1.1,2002 Proved Developed Gas Reserves 2000 Gas Production  Number of fields in area Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           | 10^6 m3 (Group share 10^6 m3)<br>10^6 m3 (Group share 10^6 m3)<br>10^3 m3/d (Group share 10^3 m3/d)<br>10^9 sm3 (Group share 10^9 sm3)<br>10^9 sm3 (Group share 10^9 sm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | 2000 Oil Production  1.1,2002 Proved Gas Reserves  1.1,2002 Proved Developed Gas Reserves 2000 Gas Production  Number of fields in area Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0           | 10^6 m3 (Group share 10^6 m3)<br>10^3 m3/d (Group share 10^3 m3/d)<br>10^9 sm3 (Group share 10^9 sm3)<br>10^9 sm3 (Group share 10^9 sm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | 1.1.2002 Proved Gas Reserves 1.1.2002 Proved Developed Gas Reserves 2000 Gas Production  Number of fields in area Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0           | 10^3 m3/d (Group share 10^3 m3/d)<br>10^9 sm3 (Group share 10^9 sm3)<br>10^9 sm3 (Group share 10^9 sm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | 1.1.2002 Proved Developed Gas Reserves<br>2000 Gas Production<br>Number of fields in area<br>Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0           | 10^9 sm3 (Group share 10^9 sm3)<br>10^9 sm3 (Group share 10^9 sm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | 1.1.2002 Proved Developed Gas Reserves<br>2000 Gas Production<br>Number of fields in area<br>Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0           | 10^9 sm3 (Group share 10^9 sm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 2000 Gas Production  Number of fields in area  Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Number of fields in area<br>Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0           | 10.3 2m2 (Group shale 10.3 2m2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Number of wells drilled / in production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 10^6 sm3/d (Group share 10^6 sm3/d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | . Audit criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result      | Comments .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.01               | TECHNICAL MATURITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del> | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | s 3D seismic available and used for the field(s) in question?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +           | 3D Seismic coverage is almost universal over the main ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           | producing area in the shallow offshore. For new seismic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | surveys the OBC (seabottom cables) technique is used,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | particularly to avoid acquisition problems around the densely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ļ                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | }           | spaced platforms. An important area where such new 3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| .                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | acquisition is now planned is the Champion Main field, where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| J                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           | the poor quality seismic mapping todate (caused by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | seabottom reefs) has hindered advancement of reservoir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| J                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | simulation and performance definition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.02               | Are seismic processing and interpretation state-of-the-art?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +           | PSDM is applied (where the data are available) to obtain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| J                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l           | better definition of fault planes. A major advance in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | interpretation quality has been obtained by the introduction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 1                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           | the Petrel geological modelling package which allows a rapid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | and assented interesting of the entermination with the dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ļ                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | and complete integration of the seismic data with the dense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | well data and with structural interpretations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.03               | s well data coverage adequate?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +           | Most of the fields are mature and well data is more than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '           | adequate. Adequate appraisal well data is available in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| I                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | undeveloped fields.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <del>- 27-</del> - | Day a transport to the state of | 0           | BSP have historically been one of the strongest proponents of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | has a 'proved area' been defined (lowest known fluid contact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 0         | last ability and the strong of the strong of proportions of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| r                  | no major/sealing faults) and is it realistic?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1           | probabilistic reserves estimation and volumetric estimates are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | still done probabilistically. Any incomplete hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| J                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | column penetrations are therefore addressed probabilistically.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | s this 'proved area' supported by seismic amplitude studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N.A.        | Good DHI amplitude data are available in some cases, eg the deeper offshore.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 400                | and/or reservoir analogues in the area?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | Log selection in new wells is state-of-the-art and fully                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.06               | Are petrophysical well data quality and quantity adequate?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +           | Log selection in new webs is state-orthography to house been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | adequate. Log interpretation seems historically to have been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | somewhat conservative (too severe cut-offs?), resulting in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ì                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i l         | STORPs that are too low in comparison with present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| }                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | performance. A major breakthrough has been the availability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ŀ                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | of through-tubing C-O tools (RST Schlumberger, RPM Becker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | or through-tubing o-o tools (not administration and he beared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| l                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Atlas) by which moving fluid levels in reservoirs can be traced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | much more accurately and on a much wider scale than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | before.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.07               | s reservoir producibility for undeveloped reserves supported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +           | Appraisal wells in undeveloped fields are rarely production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | by production tests or other evidence?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | tested. Fully adequate data are obtained from sampling tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                  | of proceeding tests of onior cylindrine;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | (MDT). Very good data are also obtained through modern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ł                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | NMR logs. Finally, there is ample analogue data in the area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.08               | Are there proper volumetric estimates?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +           | Static reservoir models (CPS-3, now being replaced by Petrel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - 1                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | are generally used as the method of making volumetric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                  | l l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | estimates upon first discovery. Petrel geological models are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | prepared following well drilling (if not already before) and-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - 1                | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | bisharen ininomina men dunina du unit ancada perore) ano.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | volumetric estimates are obtained from these. Refined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | features like porosity maps, saturation-height curves etc can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ar and a state of the company of the |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Inus de included in an early stage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | thus be included in an early stage. Historical HIIP estimates tend in some cases to be too                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Historical HIIP estimates tend in some cases to be too                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Historical HIIP estimates tend in some cases to be too<br>conservative, probably caused by too conservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Historical HIIP estimates tend in some cases to be too conservative, probably caused by too conservative petrophysical intermetations (cut-offs).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.09               | Are representative PVT data available and have they been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Historical HIIP estimates tend in some cases to be too conservative, probably caused by too conservative petrophysical intermetations (cut-offs).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +           | Historical HIIP estimates tend in some cases to be too conservative, probably caused by too conservative petrophysical interpretations (cut-offs).  PVT samples are obtained and interpreted through the proper tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | properly accounted for in the volumetric estimate?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +           | Historical HIIP estimates tend in some cases to be too conservative, probably caused by too conservative petrophysical interpretations (cut-offs).  PVT samples are obtained and interpreted through the proper tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +           | Historical HIIP estimates tend in some cases to be too conservative, probably caused by too conservative petrophysical interpretations (cut-offs).  PVT samples are obtained and interpreted through the proper tools.  Historically, GEOCAP models were often used to replace the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | properly accounted for in the volumetric estimate?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +           | Historical HIIP estimates tend in some cases to be too conservative, probably caused by too conservative petrophysical interpretations (cut-offs).  PVT samples are obtained and interpreted through the proper tools  Historically, GEOCAP models were often used to replace the initial CPS-3 models prior to major field studies. More                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | properly accounted for in the volumetric estimate?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +           | Historical HIIP estimates tend in some cases to be too conservative, probably caused by too conservative petrophysical interpretations (cut-offs).  PVT samples are obtained and interpreted through the proper tools  Historically, GEOCAP models were often used to replace the initial CPS-3 models prior to major field studies. More recently, Petrel models have become the standard. Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | properly accounted for in the volumetric estimate?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +           | Historical HIIP estimates tend in some cases to be too conservative, probably caused by too conservative petrophysical interpretations (cut-offs).  PVT samples are obtained and interpreted through the proper tools  Historically, GEOCAP models were often used to replace the initial CPS-3 models prior to major field studies. More                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

+ = Good O = Satisfactory X = Unsatisfactory N.A. = Not Applicable

### **CHECKLIST SEC RESERVES AUDITS**

Attachment 3 💆

| 1.11 | Are dynamic models available / adequate?                                                                                                             | 0 | Dynamic model coverage is not complete (some 70%) over reservoirs with proved and expectation reserves. Coverage is complete for areas under study, i.e. those areas where further development is seen as likely and as having priority. Models are almost invariably downloaded from geological models.                                                                                         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.12 | Are history matches available / adequate?                                                                                                            | + | History matches are complicated by both water and gas breakthrough in these fields (many primary gas caps) and by pressure communication with neighbouring reservoirs through partially sealing faults. Improved geological modelling has improved the quality of these matches.                                                                                                                 |
| 1,13 | Are the recovery factors for proved reserves realistic?                                                                                              | + | Recovery factors are generally based on simulation studies or<br>on production performance data. Gas recoveries take<br>account of installed and future compression.                                                                                                                                                                                                                             |
| 1.14 | Are developed reserves based on proper NFA (No Further Activity) forecasts?                                                                          | + | Yes                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.15 | Are developed reserves based on existing wells, completions and facilities, or do they require only minor costs (<10% project cost) to be hooked up? | + | Yes; Most behind-pipe volumes are not counted as developed until they are property completed.                                                                                                                                                                                                                                                                                                    |
| 1.16 | Have development projects been defined for undeveloped reserves or can they be defined?                                                              | 0 | The large majority of undeveloped reserves are covered by well targets (some notional or even undetermined and in need of further study) and forecasts. A small amount (around 9% of expectation undeveloped, much less of proved), sometimes referred to as 'legacy reserves') is not covered by targets and/or forecasts yet.                                                                  |
| 1,17 | Are there auditable development project plans with costs, benefits and economics?                                                                    | + | Projects with forecasts are included in the BSP Business Plan<br>and have project costs (some preliminary) and economics<br>associated with them.                                                                                                                                                                                                                                                |
| 1.18 | Are the projects technically mature or is further data gathering necessary?                                                                          | 0 | Projects are ranked and their development sequence is set accordingly. Those with later target dates tend to require further study work before they can be matured. Their associated recoveries tend to be based on earlier, preliminary study work or on analogues.                                                                                                                             |
| 1.19 | Are improved recovery estimates based on a successful pilot or analogue or are they otherwise supportable?                                           | + | A successful gas injection project (within-well, from deeper gas horizons) is in operation in SW Ampa. Water injection is in operation on some areas in Champion and expansion of this into neighbouring areas is being considered. For any undeveloped reserves, no pilots are deemed necessary.                                                                                                |
| 1.20 | Have the projects successfully passed a VAR3 review or are they otherwise ready for application for funding?                                         | 0 | New field developments are subjected to VAR reviews, but in-<br>field projects are generally too small for these. The projects<br>with lower priority tend to require more study work before they<br>can be matured.                                                                                                                                                                             |
| 1.21 | Are the projects firmly planned to go ahead - are there any potential show stoppers?                                                                 | 0 | In principle there are no show stoppers. Projects will go ahead in due course as and when they can be made technically and economically robust.                                                                                                                                                                                                                                                  |
| 2    | COMMERCIAL MATURITY                                                                                                                                  |   |                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.01 | Are the projects economically viable (meeting Group Scr. Crit. over range of possible future scenarios / low case reserves)?                         | 0 | Most projects pass economic screening criteria. Those that at this stage do not, are felt to become economically viable with further work and updated cost estimating                                                                                                                                                                                                                            |
|      | Have forecasts been cut off when rales become uneconomic?                                                                                            | + | Yes; minimum economic rates are determined by field.                                                                                                                                                                                                                                                                                                                                             |
|      | Have the latest Group Screening / Reference Criteria been used?                                                                                      | + | Yes                                                                                                                                                                                                                                                                                                                                                                                              |
|      | Are assumed prices and costs RT (or justified if not)?                                                                                               | + | Yes                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.05 | Is export infrastructure (pipelines, terminals etc) available or, if not, is it firmly planned and fully included in the economics?                  | + | Yes, any new infrastructure required (flow lines, well jackets etc) are included in the cost estimates and economics                                                                                                                                                                                                                                                                             |
|      | Is project financing available or can it reasonably be expected to be available?                                                                     | + | Yes                                                                                                                                                                                                                                                                                                                                                                                              |
|      | Are developed reserves actually in production?                                                                                                       | + | Yes: A regular review is held of 'shut-in potential' and it is rare for wells with developed reserves to remain shut in for a long time.                                                                                                                                                                                                                                                         |
| 2.08 | Have all proved gas reserves been contracted to sales?                                                                                               | 0 | The BLNG plant is the main customer for BSP gas. Additional, smaller gas sales streams are for local domestic use and for power generation. The BLNG contract was extended in 1992 on the basis of then available proved gas reserves. This base, being somewhat conservative, has since then grown and there is now a surplus of some 1.5 Tcf proved gas and some 5 Tcf of expectation volumes. |

+ = Good O = Satisfactory X = Unsatisfactory N.A. = Not Applicable

8SP-Alt3, CheckList

Page 2 of

31-5-2002, 12:07

FOIA Confidential
Treatment Requested

, 1995年6月

BSP, 27 Apr - 3 May 2002

## CHECKLIST SEC RESERVES AUDITS

Attachment 3

|      | ii · · · ·                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|--------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.09 | If not, can they reasonably be expected to be sold in existing markets and through existing / firmly planned facilities? | +    | There is no doubt that any surplus gas will be able to be contracted to the existing supply obtains. Additional local outlet possibilities are being pursued.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.10 | If neither, is there a firm commitment (eg FID) that supports the assumption and maturing of a future market?            | N.A. | 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3    | REASONABLE CERTAINTY                                                                                                     |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.01 | Is the uncertainty range of volumetric parameters and STOIIP estimates adequate?                                         | 0    | Probabilistic volumetric estimates tend to become irrelevant for mature fields since they cannot capture reservoir performance data properly. Volumetric Proved HIIPs therefore tend to become too low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.02 | Is the uncertainty range of developed recovery adequate?                                                                 | X    | Expectation developed recoveries are determined from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.03 | Is the uncertainty range of undeveloped recovery adequate?                                                               | ×    | performance decline extrapolations in those cases where there is no active history matched simulation model. The standard method of determining proved developed volumes is through fitting a symmetrical triangular distribution around the expectation estimates with the lower end point halfway between cumulative production and expectation value. This invariably results in a 'proved' developed reserves volume that is some 70-78% of expectation. This is highly artificial and not in accordance with current Group guidelines.  Historically, total reservoir recoveries were determined from volumetrics with recovery factors derived from analogues or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                          |      | from preliminary simulation studies. A significant portion of total recoveries in BSP are still based on these estimates. Developed reserves were based on performance extrapolations and undeveloped reserves were the difference between total and developed reserves. With time, developed reserves grew and in many cases overtook the original total proved (sometimes even expectation) estimates. Hesitation was applied in updating these negative reserves because reservoir crossflow was a common phenomenon and any such updates required a regional study. Lack of resources and priority caused a continuous deferment of such studies in many cases. Negative reserves continued in many reservoirs (particularly in the Champion Main field), until concerted efforts in 2000/2001 brought back the total of such reserves to more reasonable, but still low proportions.  The proper way of determining undeveloped reserves is through a simulation study whereby these reserves are calculated from identified activities, with well targets. Developed reserves can be determined from the same (history matched) simulation model or from well performance extrapolations. With progressing field development, both developed and undeveloped reserves are updated in the light of reservoir performance, new drilled wells, changed future well targets etc. Total reserves are always the sum of both adeveloped and undeveloped reserves and are therefore no longer fixed 'target' recoveries that do not (or only poorly) |
|      |                                                                                                                          |      | become updated with progressing field life. This is now the norm in the large majority of Group OUs and in BSP this is also the approach in the field areas with simulation models. In the original approach followed by BSP, proved undeveloped reserves were simply the difference between proved total and proved developed reserves. In the new approach, whereby undeveloped reserves are determined independently, the method of determining proved volumes is less well defined. The impression is that in many cases, a conservative approach is still followed. Group guidelines clearly state that in such cases a number of simulator scenarios should be run, with a reasonable PBS scenario picked at first, which can gradually become updated by a scenario that grows closer to or equal to expectation values with increasing field maturity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.04 | Have market / production constraint uncertainties been taken                                                             |      | There are production constraints but these are taken account                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.05 | into account?  What is ratio of field(s) cum.prod. / expectation total recovery?                                         |      | of in field planning and present no uncertainties.  Quite variable, from 0 (undeveloped fields) to 92% (Seria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Can the Caldrey be assessed as a second                                                                                  |      | field). BSP average is 70% for oil and 50% for gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | Can the field(s) be considered mature?                                                                                   |      | Approximately half is mature to very mature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.07 | Are proved (developed and total) reserves consistent with<br>'proved areas'?                                             | 0    | Proved areas are not adhered to rigidly, although partial penetrations etc are taken account of in the probabilistic estimates, see also 1.04.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

+ = Good O = Satisfactory X = Unsatisfactory N.A. = Not Applicable

Page 3 of 6

BSP-Att3, CheckList

31-5-2002, 12:07

### CHECKLIST SEC RESERVES AUDITS

Attachment 3

| 3.08 | Are proved reserves for fields (or other entities used for asset depreciation) added together arithmetically?                                                                                     | +    | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.09 |                                                                                                                                                                                                   | +    | Asset depreciation is done at a field level. Hence, guidelines would allow probabilistic addition of reservoirs within a field. This is not done at present. In view of the impractical aspect and intransparency of results (dependency!) this is supported                                                                                                                                                                                                                                                                                                                                                                         |
| 3.10 | Is any assumed dependency in probabilistic addition appropriate?                                                                                                                                  | N.A. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4    | GROUP SHARE CALCULATION                                                                                                                                                                           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.01 | Are proved and proved developed reserves fully producible within the licence period (or its extension if there is a legal right) and within production ceilings/constraints?                      | +    | Current production licences expire as follows: Onshore and 'first offshore' (eg SWA): 22 Dec 2003, Second offshore area (eg FA): 31 Dec 2007, Third offshore area (rest): 31 Dec 2025. There is a right to extend these licences by two successive periods of 15 years, at terms and conditions to be agreed upon. Discussions on the terms and conditions for the onshore and first offshore licences are currently in progress. There are no indications that an acceptable set of new terms and conditions cannot be agreed with the Government and BSP management are fully confident that a licence extension will be obtained. |
| 4.02 | Are the forecasts required to demonstrate the above condition consistent with the firm Base Case presented in the latest Business Plan?                                                           | +    | Yes, all reserves for which forecasts are available are included in the Business Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.03 | production contracts)?                                                                                                                                                                            | +    | BSP is a 50% owned Shell company, with the remainder being held by the Brunei government. All licences are 100% BSP owned, BSP has full title to the produced oil and gas and Group share is thus uniformly 50%                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.04 | is the hydrocarbon PSC entitlement share (net cost oil + profit oil only) calculated properly?                                                                                                    | N.A. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.05 | is the hydrocarbon Purchase Right share (to the extent that economic benefit is derived from production while still bearing share of risks and rewards) calculated property?                      | N.A. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.05 | Are royalties that are (formally or customarily) paid in cash included in reserves?                                                                                                               | +    | Royallies (between 8 and 12.5%, dependent on area) are paid in cash and are thus not subtracted from reserves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.07 | Are royalties paid in kind excluded from reserves?                                                                                                                                                | N.A. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.08 | Are volumes delivered free of charge as fees in kind (e.g. for infrastructure use by third parties) included in reserves? Similarly, are volumes received as fees in kind excluded from reserves? | N.A. | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.09 | Has historic Group under-or overlift (e.g. compared with other co-venturers) been accounted for?                                                                                                  | N.A. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.10 | Have gas volumes produced from the reservoir but not yet sold (e.g. through UGS, gas re-injection into another reservoir or a swap deal with another field) been properly maintained in reserves? | +    | Gas production and re-injection volumes involved in the intra-<br>well gas re-injection project in SW-Ampa are properly<br>recorded, subtracted from the source reservoirs as<br>production and added (as negative production) to the target<br>reservoirs. Gas ultimate recoveries in the latter are from time<br>to time re-evaluated, taking account of possible future losses<br>due to residual gas saturations in gas flooded oil zones.                                                                                                                                                                                       |
| 4,11 | Have gas volumes paid for by the buyer but not yet produced<br>and sold ('take-or-pay' gas) been properly maintained in<br>reserves?                                                              | N,A. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.12 | Have separate submissions been made for Equity ,<br>Entitlement and Purchase Right volumes?                                                                                                       | N.Ä. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5    | AUDIT TRAILS                                                                                                                                                                                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.01 | Are proved and proved developed reserves estimates up-to date?                                                                                                                                    | -    | Developed reserves are reviewed annually in many, but not all reservoirs. Undeveloped reserves in the 70% (approx.) of reserves that are covered by 'active' simulation models are reviewed regularly as well. Undeveloped reserves in the remaining 30% are generally derived from older total recovery estimates and are thus less up-to-date.                                                                                                                                                                                                                                                                                     |
|      | Can reported net Group equity reserves be reconciled with<br>individual field reserves estimates?                                                                                                 | 0    | Yes, with the exception of the condensate-produced as oil see 6.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | Can reserves changes be reconciled with individual field changes?                                                                                                                                 | E    | argely, yes, with the exception of the condensate-produced is all (see 6.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | Are reserve changes reported in the appropriate categories?                                                                                                                                       |      | /es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | s there a document in place describing the OU's reserves eporting procedures?                                                                                                                     | g    | /arious documents are in place (eg a DUR review procedure juide). The annual reserves review process is kicked off by a lote by the reserves coordinator, setting out the requirements, arget dates and responsibilities.                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

 $\pm$  = Good O = Satisfactory X = Unsatisfactory N.A. = Not Applicable

**BSP-An3**, CheckList

Page 4 of 6

31-5-2002, 12:07

FOIA Confidential Treatment Requested

### CHECKLIST SEC RESERVES AUDITS

Attachment 3

| £ 02 1       | Annahaint                                                                                                                                                                                                                                                                                                                                  | <del>,</del> |                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Are technical reports available describing reasons and<br>justifications for new reserves estimates in sufficient detail?                                                                                                                                                                                                                  | +            | All reserves changes are documented in reports or notes,<br>depending on their complexity. Full field (or part-field) review<br>and FDPs are documented comprehensively.                                                                                                                                                                                                                              |
|              | Are reports numbered / indexed properly and is there a central library where copies are kept?                                                                                                                                                                                                                                              | +            | Yes                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.08         | is the annual reserves submission supported by a sufficiently detailed summary note explaining the reserves changes (classified in revisions, extensions, sales-in-place etc) per field, with references to detailed reports as appropriate?                                                                                               | +            | Yes, an annual report 'End-year Resource Volumes for<br>External and Internal reporting is issued, together with a<br>summary of results.                                                                                                                                                                                                                                                             |
|              | Are electronic data bases containing both historic submissions' data and current reserves data in place and accessible?                                                                                                                                                                                                                    | +            | Yes, a comprehensive RISRES data base is in place                                                                                                                                                                                                                                                                                                                                                     |
|              | Do these data bases also contain references to detailed reports?                                                                                                                                                                                                                                                                           | +            | Yes (a very rare feature among OUs)                                                                                                                                                                                                                                                                                                                                                                   |
| 6            | CONSISTENCY WITH FINANCIAL REPORTING                                                                                                                                                                                                                                                                                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | Are proved and proved developed reserves based on                                                                                                                                                                                                                                                                                          | +            | Yes                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,            | fiscalised volumes under sales conditions?                                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6.02         | Are oil, NGLs and sales gas reported in their appropriate categories?                                                                                                                                                                                                                                                                      | +            | Oil, NGL and gas are reported by stream. The condensate stream (consisting of gas well liquids or 'CHPS' and stugcatcher liquids plus other liquids from the BLNG plant, called 'LLG') is sold and exported separately. Somewhat exceptionally, BSP, REs keep track of condensate production from oil wells in oil-vassociated gas reservoirs, even though these liquids are produced through the oil |
|              | •                                                                                                                                                                                                                                                                                                                                          |              | stream. This condensate production is added to the condensate balance in these reservoirs and reflected in individual field condensate volumes. Reported NGL reserves are however based on produced streams, i.e. NGLs are only those condensates produced and sold separately. Reported oil reserves similarly include condensate produced in the oil                                                |
| :<br>:       |                                                                                                                                                                                                                                                                                                                                            |              | stream. The main justification for this extra accounting (not in the EPPROMS system) is to obtain a correct reflection of the condensate in reservoirs with very large gas caps. The LLG stream has been included in the sales and reserves accounting since 2000. The reason for their inclusion was that BSP have effective title to these liquids (with the BLNG g                                 |
| 6.03         | Are own use, fuel, losses elc excluded?                                                                                                                                                                                                                                                                                                    | *, + .       | Own use, fuel and losses are deducted as a bottom line correction from annual production and from reserves before the annual Group reserves submission. The percentage is                                                                                                                                                                                                                             |
| 6.04         | Are gas GHVs measured properly for sales gas conditions                                                                                                                                                                                                                                                                                    | +            | calculated annually (around 8%). Yes, gas samples are taken regularly and evaluated with the                                                                                                                                                                                                                                                                                                          |
|              | and accounted for in reserves submissions?                                                                                                                                                                                                                                                                                                 |              | proper tools.                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.05         | Are annual Oil+NGL production volumes in reserves submissions consistent with Upstream sales volumes reported into the Finance (Ceres) system? (Ceres line 0933, which is the sum of line 7385 (Reward Oil/NGL) and line 0871 [= 8462-Oil + 8464-NGL for Consolidated Companies + line 3596 (= 0931-Oil + 0932-NGL) for Assoc. Companies). | +            | Yes, close cooperation is observed between Finance accounts and the reserves coordinator.                                                                                                                                                                                                                                                                                                             |
| 6.06         | Are annual gas production volumes in reserves submissions consistent with Upstream Gas production available for Sales (GpafS) volumes reported into the Finance (Ceres) system? (Ceres line 9130).                                                                                                                                         | +            | Yes, close cooperation is observed between Finance accounts and the reserves coordinator.                                                                                                                                                                                                                                                                                                             |
| 6.07         | Are the Financial and Reserves accounting of production / sales fully consistent with each other also in cases like royalties, fees-in-kind, underlift/overlift, gas re-injection/UGS, take-or-pay gas?                                                                                                                                    | +            | Yes (only relevant for annual production)                                                                                                                                                                                                                                                                                                                                                             |
| 6.08         | Are the net Shell share reserves reported properly and consistently with Finance reporting (100% for consolidated Shell companies, with minority reserves reported separately, or actual percentage if less than 50%)?                                                                                                                     | N.A.         | BSP is a 50%, i.e. an associate company and accounts and reserves are reported on a net Group share basis.                                                                                                                                                                                                                                                                                            |
| <b>6</b> .09 | or actual percentage in less than 30/6)? Are reported proved developed reserves consistent with those used for asset depreciation in Group Accounts?                                                                                                                                                                                       | +            | Yes, Proved developed reserves and Unit of Production<br>Factors are advised annually by the reserves coordinator to<br>Finance accounts.                                                                                                                                                                                                                                                             |
| 7            | OVERALL                                                                                                                                                                                                                                                                                                                                    |              |                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7.01         | If Group guidelines should not or not completely have been followed, are results still reasonable / overstated / understated?                                                                                                                                                                                                              |              | Proved reserves are likely to be somewhat understated due to the conservative procedures still in place                                                                                                                                                                                                                                                                                               |
| 7.02         | Do the reported proved and proved developed reserves<br>estimates give a reasonably accurate reflection of shareholder<br>value?                                                                                                                                                                                                           |              | Whilst expectation estimates appear quite reasonable, the<br>proved estimates are too conservative in comparison with<br>Group guidelines                                                                                                                                                                                                                                                             |

+ = Good O = Satisfactory X = Unsatisfactory N.A. = Not Applicable

BSP-Att3, CheckList

Page 5 of 6

31-5-2002, 12:07

**FOIA Confidential** Treatment Requested

CHECKLIST SEC RESERVES AUDITS

Attachment 3

|                                      | **Eight                                                                                                                            | Score (0-100%)                                                                                                                                                                  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TECHNICAL MATURITY                   | 25%                                                                                                                                | 82%                                                                                                                                                                             |
| COMMERCIAL MATURITY                  | 16%                                                                                                                                | 81%                                                                                                                                                                             |
| REASONABLE CERTAINTY                 | 14%                                                                                                                                | 37%                                                                                                                                                                             |
| GROUP SHARE CALCULATION              | 9%                                                                                                                                 | 100%                                                                                                                                                                            |
| AUDIT TRAILS                         | 16%                                                                                                                                | 90%                                                                                                                                                                             |
| CONSISTENCY WITH FINANCIAL REPORTING | 11%                                                                                                                                | 100%                                                                                                                                                                            |
| OVERALL OPINION                      | 8%                                                                                                                                 | 50%                                                                                                                                                                             |
| TOTAL SCORE                          | 100%                                                                                                                               | 78%                                                                                                                                                                             |
|                                      | COMMERCIAL MATURITY REASONABLE CERTAINTY GROUP SHARE CALCULATION AUDIT TRAILS CONSISTENCY WITH FINANCIAL REPORTING OVERALL OPINION | TECHNICAL MATURITY 25% COMMERCIAL MATURITY 16% REASONABLE CERTAINTY 14% GROUP SHARE CALCULATION 9% AUDIT TRAILS 16% CONSISTENCY WITH FINANCIAL REPORTING 11% OVERALL OPINION 8% |

+ = Good O = Satisfactory X = Unsatisfactory N.A. = Not Applicable

BSP-Att3, CheckList

Page 6 of 6

31-5-2002, 12:07

FOIA Confidential Treatment Requested

Attachment 4.1

Proved I Expectation Oil+NGL Reserves versus field maturity,

1.1.2002 BSP DEVELOPED OIL+NGL RESERVES
Fields / OUs Proved / Expectation ratios vs maturity



# 1.1,2002 BSP UNDEVELOPED OIL+NGL RESERVES



Attachment 4.2

Proved / Expectation Gas Reserves versus field maturity

# 1.1.2002 BSP DEVELOPED GAS RESERVES Fields / OUs Proved / Expectation ratios vs maturity





BSP-Covn

31/05/02

FOIA Confidential Treatment Requested